© 2015 Singularity Defense / DynamicHead

24. April 2015: Unity Editor Extension Dynamic-Link Library

Table of Contents

BT o T Lo T | o Yo LU PP 2
2. Why @ dynamiC-linK I Drary .. e e 2
G 1T o = Yo U =T PP 2
4. DownNIoad the Uity ProjeCt. . it e e et e et e e r e et 3
5. CuStomM Editor With T00 DS ettt e e e e e e e e e s e e e e e e 4
6. Connect the Editor script with the standard SCripPt.....coiiiiii i e 5
7. Notice changes in the INSPeCtOr WINAOW.ot et e e ee e 6
8. Add tooltips with description 0 INTEHISENSE. ...ttt e 7
9. Hide public members from intellisense in the standard script......ccooiiiiiiiii e 8
10. USE @Nd Play the SCOMO. . ittt ittt ettt et e e e e et e et e et e e e e 9
11. Create a dynamic-link library for the Unity Engine & Editor......ccvviiiiiiiiiii i e 12

3 A U o)V o T [TS g = [g g LTy o= L = N 12

3 U 1o 11 Y =l T oY gl = [g [Ty o = [l PP 25
12. Test the .dlls / .Xmlin @ New Uity ProjeCh. ..o e aaaes 29
13. Create a build appliCation. . .vi i e e 30
14, Test the INLelliSENSE L0 I P S . ettt e e ettt et r e e raee e eaaees 31

15. Automatically generate a script doCUMENTAtION.iiuiii i e 32

http://www.singularitydefense.com/tutorials/unity-editor-extension-dynamic-link-library
http://www.singularitydefense.com/tutorials/unity-editor-extension-dynamic-link-library
http://www.singularitydefense.com/

1. What it is about

In this workflow tutorial you will learn how to
e create a custom Editor with tooltips
« add a tooltip with description to intellisense
« hide public members from intellisense
« document the code
- create a dynamic-link library for the Unity Engine & Editor

- automatically create a documentation

{| table of contents |

2. Why a dynamic-link library

To create a managed Dynamic-Link Library (.dll for short) has the following advantages
- public members, that are needed for the custom Editor, can be hidden from intellisense
- it's handier than dozens of scripts

- not everyone can easily read, edit and possibly steal the source code

| table of contents |

3. What you need

To complete this tutorial you'll need the following free tools:
Unity with MonoDevelop to create the project, code, dynamic-link library and application
DoxyGen to automatically create the documentation from code

Note: This tutorial was created with Unity 5.0.1 on a Windows 8.1 PC.

(| table of contents |

http://www.stack.nl/~dimitri/doxygen/
http://unity3d.com/get-unity
http://docs.unity3d.com/Manual/UsingDLL.html

4. Download the Unity project

To download the project will help you to better follow and understand this tutorial.
Download abstractexample.unitypackage

Download the file, create a new project in Unity (menu bar -> File -> New Project...), call it e.g. "Unity
Editor Extension .dll".

Import the Unity package in your new project (menu bar -> Assets -> Import Package -> Custom
Package... -> *.unitypackage), then click the Import button in the window where the files are listed that
are imported.

Double click / open the scripts AbstractExample.cs (in the Scripts folder of the project window)
and AbstractExampleEditor.cs (in the Editor folder of the project window).
Then open the scene AbstractExampleScene (in the main folder (Assets) of the project window).

In general you can also open MonoDevelop by using Unity's menu bar -> Assets -> Sync MonoDevelop
Project.

Note: "Abstract" in this case has nothing to do with the C# keyword abstract. It only means that this is
a theoretical example! I chose an abstract example to keep it as simple as possible.

| table of contents |

http://www.singularitydefense.com/uploads/2/4/7/1/24714231/abstractexample.unitypackage

5. Custom Editor with tooltips

A custom editor displays custom properties of your Unity standard script (called AbstractExample.cs in
this example) in the Unity Inspector window.

To create a custom editor you need to extend your standard Unity script (that normally derives from
the MonoBehaviour class) in MonoDevelop with a CustomEditor script (that derives from the Editor class
and is called AbstractExampleEditor.cs in this example).

First you need to place this code inside the Editor script to tell the Editor script that it extends the
standard script:

[CustomEditor(typeof(AbstractExample))]

To show the public member variable

public Transform t_Abstract;

of the standard Unity script AbstractExample.cs in the Inspector window with a bold heading and tooltips
you first need to connect this public member variable with the editor script.
This is done by the following lines of code in the Editor script AbstractExampleEditor.cs:

private SerializedProperty sp_t_abstract;

private void OnEnable()

{
sp_t abstract = serializedObject.FindProperty("t_Abstract");

;

If you now change the reference to t_Abstract this will also automatically change the content of the
variable sp_t abstract.

Display the variable in Unity's inspector window by adding the following line of code to the editor
script AbstractExampleEditor.cs:

EditorGUILayout.PropertyField(sp_t_abstract, new GUIContent("AbstractTransform”, "Som..."));

The first string of GUIContent names the variable and the second string is the text shown by the tooltip
when the name is hovered by the mouse cursor.
The bold heading works the same way.

In the Inspector window hover the heading and the variable name to see the tooltips.

v [B ¥ Abstract Example (Script) W %,

Set the 'I"*'ansfnrm here:
AbstractTrin-f~-— —]
Drag and drop a gameobject from the Hierarchy
window into the rectanagle below or click the small
circle on the right side next to the rectangle and
select a gameobject.

{| table of contents |

http://docs.unity3d.com/ScriptReference/Editor.html
http://docs.unity3d.com/ScriptReference/CustomEditor.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.html
http://docs.unity3d.com/Manual/Inspector.html
http://docs.unity3d.com/Manual/editor-CustomEditors.html

6. Connect the Editor script with the standard script

In much cases the standard script needs feedback from the Editor script. For example if you need to
change something when (like in this example) the reference (or value) of a variable was changed.

Note: When you create a build application of a Unity project the UnityEditor namespace and also the
Editor script is cut away and is not included into the build application. So you need to place all code you
possibly want to execute at the runtime of the build application (nhormally) inside Unity standard scripts.

To create a connection you need the following code inside the Editor script AbstractExampleEditor.cs:

private AbstractExample s_target;

private void OnEnable()

{
s_target = (AbstractExample)target;

}

This creates a variable that references to the standard script AbstractExample.cs and with the line
s target.AbstractTransformChanged();

it's possible to call the public method AbstractTransformChanged of the class AbstractExample from within
the class AbstractExampleEditor.

| table of contents |

7. Notice changes in the Inspector window

To know when a change was made from the user, to call a method in the script, you need to create a
"change check" that starts before the observed variable sp_t_abstract in the code and ends behind it.

EditorGUI.BeginChangeCheck();
EditorGUILayout.PropertyField(sp_t_abstract, new GUIContent("AbstractTransform”, "Som..."));
if(EditorGUI.EndChangeCheck())
{
serializedObject.ApplyModifiedProperties();
s_target.AbstractTransformChanged();

}

If a change was made and EditorGUI.BeginChangeCheck() is true the change in sp_t_abstract is applied
to t_Abstract with the first line of code within the if condition and then the

method AbstractTransformChanged is called and several components are attached to the

gameobject t_Abstract references to.

| table of contents |

8. Add tooltips with description to intellisense
Add tooltips to the intellisense of public (or even private) members with this code:

/// <summary>Count the amount of components of a certain type that are attached to a gameo...
/// <para>T is the type of the component to count.</para>
/// </summary >
/// <param name="targetGameObject">The gameobject its certain type of compon...</param>
/// <returns>The amount of certain components attached to the gameobject. </returns>
/// <example>To call this method from anywhere use e.g.:
/// <code>
/// int numberOfBoxColliders;
/// numberOfBoxColliders = AbstractExample.GetComponentCount< BoxCollider>(m...);
/// </code>
/// </example>
public static int GetComponentCount<T>(GameObject targetGameObject)
where T : Component
{
Component[] componentTypeToCount;
componentTypeToCount = (Component[])targetGameObject.GetComponents(typeof(T));
return componentTypeToCount.Length;

’

The /// comment slashes tell MonoDevelop (and also e.g. Microsoft Visual Studio) that these XML
comments describe the member below in more detail.

<summary> should describe what the member is doing / good for.

<param name="parameterName"> describes a parameter of a method.

<returns> describes the content that is returned by the method.

<example>...<code> gives the user a multiline example how to use the member.

Note: Make sure you replace the pre-defined XML characters that the tooltips are displayed proper.

| table of contents |

http://www.w3schools.com/XML/xml_syntax.asp
http://www.w3schools.com/xml/default.asp
https://msdn.microsoft.com/de-de/library/5ast78ax.aspx

9. Hide public members from intellisense in the standard script

Some members in the standard script need to be public that the connected Editor script can access them.
But in the final product the user should only see the methods that she/he is allowed to use and that are
documented.

To hide these members just add this code above the member you want to hide from intellisense like this:

[System.ComponentModel.Browsable(false),
System.ComponentModel.EditorBrowsable(System.ComponentModel.EditorBrowsableState.Never)]
public Transform t_Abstract;

Note: To hide this variable from intellisense only shows that you can hide all kind of members. It is still
accessible from outside.

Note2: This will only work in the build .dll! (So.. let's test it after the script was build to a .dll.)

{| table of contents |

10. Use and Play the scene

Let's test the example scene AbstractExampleScene.
Follow the screenshots and their descriptions below how to do this.

Inity Editor Extension .dll - PC, Mac & Linux Standalone®* <DX11>
TS Tovee = oot~
= @ Inspector | =
T Static

& abstractController

Tag m LB?EF m

Gizmos ~ @rAll

vJ) Transform W 2,
Fosition ®0 Y0 Z|[H
Rotation 0 Y0 Z0
Scale ®1 it Z1
v [¥ Abstract Example (Script) W,
Set the Transform here:
o]

AbstractTransform - Cube (Transform) o i

& -= | EHierarchy | -
W * Create » crall

Main Camera e I

Directional Light SAELS CEAE

AbstractContraoller P
AbstractController

Cube

Directional Light
Main Camera

Select the AbstractController gameobject in the Hierarchy window (1.). Now you can see the custom
Editor in action. To connect the Cube gameobject to the script click the small circle (2.) in the Inspector
window. A Select Transfrom window will show up. Here select the Cube gameobject (3.).

The method AttachColliderRigidbodyAndHoveringConstForcelfNeeded in the standard script
AbstractExample.cs was called when the transform reference in the Inspector window was changed.
(Left: before -- Right: after)

ne.unity - Unity Editor Extensio

[@E S:ﬂzm] [w3 Center! 1 Local |

im "™
€ Same 'H'Sn:ene = | B Inspector
Free Aspect - Maxzimize on Play Mute audio Stats Gizmos |- & Cube

B Console & Project =
Clear Collapse ClearonPlay ErrorPause @2 Ao @

o Murmber of attached BoxColliders:1

LnityEngine.Debug:Log({Object)

o Components deleted,
LnityEngine.Debug:Log({Object)

o Mumber of attached BoxColliders:0
LnityEngine.Debug:Log({Object)

Tag | Untagged

) Transform
| . Cube (Mes|
» B ¥ Mesh Rend

. Default-M;
[Shader 'S

= Hierarchy =
Create = Qrall

Main Camera
Directional Light
AbstractController
Cube

Click the Play button to run the scene. The Start method of the script AbstractExample.cs is called and
generates the output in the console. The cube doesn't move.

If you would comment / change the lines 108 & 109 of code in the Start method like this

//DeleteColliderRigidbodyAndConstForcelfPresent(t_Abstract.gameObject);

Debug.Log ("Components NOT deleted.");

the three attached components are not deleted and the Cube gameobject will move to the right on Play.

| table of contents |

11. Create a dynamic-link library for the Unity Engine & Editor

To wrap the code in a .dll with MonoDevelop it is necessary to create two .dlls. One .dll includes the
standart script and the other .dll includes the Editor script that will be cut off when the project is build as
application. This' the reason why two .dlls are needed.

11.1. UnityEngine namespace

Create an new project in MonoDevelop and build the Editor script AbstractExample.cs as .dll.
Follow the pictures and the descriptions how to do this.

Assembly-CSharp - Scripts\AbstractExample.cs - MonoDevelog

File | Edit VYiew 5Search Project Build Run Version Control Tools Window Help

S
New 3 File... Ctrl+N R
ition loaded.,

Open... Ctrl+0 = Solution... Ctrl+Shift+M

Works Pace..

ielection

Recent Files

Recent Solutions

J Close 5olution

1 ar
Ctrl+WW - S e

IS GESONN - = - IVionoBehaviour

#region public member variables

[System.ComponenthModel Browsable(fz/z=), System.Componenthodel EditorBrowsable(System.Componentiodel Edit
public Transform t_Abstract;

#endregion public member variables

#region public static methods

Create a new Solution.

MNew Solution

l2 Project

Library d::-----

Creates an empty C# class library
Empty Project

¥ Project

Library

StandardDLy

|v"| Create -:|||
sionStandardDLL

targetGameObject gomedbject AddComponent<BonColliders| |;

if[mrpstGameObject. GetComponent<Rigidbodys | = |

In the New Solution window select that you want to create a C# -> Library, name it
EditorExtensionStandardDLL and choose a proper location to save it. Then click the OK button.

EditorbBxtensionStandardDLL - MyClass.cs - MonoDevelop-U

Yersion Control Teels Window Help

(=
File Edit View Search Project Build Run

® MonoDevelop-Unity

> Debug
Debug
b Release
Mo selection

=]
&)
m
]
A

namespace EditorBxtensionStandardDLL

{
public class MyClass
{
public MyClass ()
{
1
1
1

Change the build mode to Release in MonoDevelop because the source code is working in the Editor, so we
assume it's also working as a build .dll.

orExtensionStandardDLL - MyClass.cs - MonoDevelop-Unity
ontrol Tools Window Help

® MonoDe p-Unity

Solution

¥ [EditorExtensionStandardDLL
¥ [EditorExtensionStandard DLL
v | References
System
Assemblyinfo.cs
MyClass.cs

Open With r
Version Control

Open Containing Folder

I
(=]
L]
-
3
3
[1¢]
0
-+
o
C
oie
=
e}

Co py Ctrl+C

a Cut Ctrl+X

=
=

Remove S mmmm=

Rename F2

Build Action

CQuick Properties

e LO]1|O

Properties

Refresh

Now delete the automatically created file MyClass.cs in the solution window. (If you don't see the solution
window tab you can let it appear with menu bar -> View -> Pads -> Solution.) We won't need it.

EditorExtensionStandardDLL - MonoDevelop-Unity

ontrol Tools Window Help
@ ltemns

Solution
¥ [EditorExtensionStandardDLL
¥ [EditorExtensionStandard DLL
v References -
--;ﬁgﬂi Edit References...

Assembly
Refresh

I
(=]
L]
-
3
3
[1¢]
0
-+
o
C
oie
=
e}

=
=

Uol3n|o

In the solution window click the small gear button and choose Edit References... to add references to
other necessary .dlls.

Edit References

MNet Assembly
Unity | Editor | Data |Managed | < mmmmm

Places
. Search
ecently Used
tmow_001 nunit.framework.dll

Desktop Unity.CecilTools.dll

Local Dis
Local Disk |

Unity.DataContract.dll 4.04,2015
Unity.lwvyParser.dll 28,7 kB 14.04.2015

Local Disk (E:) Unity.Locator.dll 8.7k 4.04,2015

< Removable o e
i Unity.SenalizationL...

UnityEditor.dll 3.5 MB
UnityEditor.Graphs.dll 2104 kB
T-8 UnityEngine.dll 794.6 kB 14.04.2015 D ——

8 DVD BW Drive (G:)

4 BD-ROM Drive (H:)

Assemblies W

UnityEngine, Version=0.0.0.0, Culture=neutral Add Cmmmm=

In the Edit References window change to the .Net Assembly tab and navigate to the Managed folder inside
the Unity folder to select the UnityEngine.dll. Then add it to the Selected references: list on the right side.
Click OK.

ontrol Tools Window Help

@ Project saved.

Solution
¥ [EditorExtensionStandardDLL
mmmm="% v | | EditorExtensionStandardDLL
B;I_'_I.I Build EditorBxtensionStandardDLL F7
Rebuild EditorExtensionStandardDLL Ctrl+F7
Clean EditorExtensionStandardDLL

Set As Startup Project

I
0
L]
=
3
=
1]
=
=
[]
C
.
=
[4¢]

Add Files...

=
=

Add Web Reference WYersion Control

Add Files from Folder... : Find in Files... Ctrl+Shift+F

uoln|o

Open Containing Folder

Eﬂpy

Cut

Rename

The next step is to link the source code to this solution. Click the small gear and click Add -> Ad(d files...

Add files

2014 | T-8 || GitHub Unity Editor Extension .dll ssets | Scripts < mmmm=

Mame s Size Modified
mmmm= =S AbstractExample.cs 4,9 kB 15:12

& Recently Used

timow 001

Desktop
= Local Disk (C:]
- Local Disk (D:)
» Local Disk (E:)
- Bemovable Disk ...
¥ DVD RW Drive (G:)
¥ BD-ROM Drive (H:)

Documents

T-8

[] override default build action

wwmet > | Open

Browse to the Unity example project and select and open the file AbstractExample.cs in the Scripts folder.

Add File to Folder

The file E:\2014\T-8\GitHub\Unity Editor Extension .dI\Assets
\Scripts\AbstractExample.cs is outside the target directory. What
would you like to do?

() Copy the file to the directory

() Movwe the file to the directory

Cancel

Select Add a link that the file is automatically updated here when you make changes in the Unity project.

MonoDevelop-Unity

ontrol Tools Window Help

& Project saved.

Solution

¥ |] EditorExtensionStandardDLL
¥ [EditorExtensionStandard DLL
v | References
— UnityEngine.dll
System
_| AbstractExample.cs
Assemblyinfo.cs

I
(=]
L]
-
3
3
[1¢]
0
-+
o
C
oie
=
e}

=
=

Uol3n|o

The Solution window should look like this.

Solution
¥ [] EditorExtensionStandardDLL
mmmm="% v | EditorExtensionStandardDLL
E?.‘_ll Build EditorExtension5tandardDLL F7
Rebuild EditorExtensionStandardDLL Ctrl+F7
Clean EditorBxtensionStandardDLL

Set As Startup Project

Add

i
o
Ll
=
3
-
iD
-
—+
8]
=
=i
=
il

Tools

=
=

WYersion Control

:] Find in Files... Ctrl+5hift+F

Loln|o

Open Containing Folder
Copy

Cut

Delete

Fenam

Options

Refresh

To get tooltips it is necessary to change the compiler settings. Click the small gear and open the Options.

R Project Options - EditorExtensionStandardDLL ' Solution
* | EditorExtensionStan

* General .
Compiler EditorExtension

it Main Setoings

Engine.d|

I . - - :b Co r‘:ﬁ-:g uration: | Releass Natform: Any CPU W
stem
ommands . : ractExamp
General Options =)
I {lr‘lﬂt_u._:r.atll_.-r 5 AsSsern ||::||'_-,-'Ir|f-:-.c*_-'.
o : [Generate overflow checks
Compiler < mmmmm = ;

Signing | Enable optimizations
[] Emit debugging information
mmmmm=s [/ Generate xml documentation
= Define Syn

ioi Custom Commands

¥ Source Code Flatform target:
MET Maming Policies

* & Code Formatting Warnings
Warning Level: |4

Ignore warnings:

[] Treat warnings as errors

Additional Options

Additional arguments:

In the Project Options window on the left side select Build -> Compiler. Make sure the Configuration is set
to Release. Enable Generate XML documentation to generate the XML file with the documentation.
MonoDevelop will use it to load the intellisense text. Then click the OK button.

(& EditorExtensionStandardDLL - MonoDevelop-Unity
File Edit View 5 Build | Run Version Contrel Tools Window Help

E Build All Fg
Rebuild All Ctrl+F2 |

Clean All

E?_'_ll Build EditorExtensionStandardDLL Fr
Rebuild EditorExtension5standardDLL Ctrl+F7
Clean EditorBxtensionStandardDLL

Now let's build the .dll. In the menu bar click Build -> Build EditorExtensionStandardDLL. Ignore the two
warnings because the two members without XML comment will not show up in the intellisense at all.
(Compare chapter 9.)

The build EditorExtensionStandardDLL.dll is saved into the MonoDevelop project folder under bin ->
Release together with the EditorExtensionStandardDLL.xml file. Leave it there.. for now.

|| table of contents |

11.2. UnityEditor namespace

Create an new project in MonoDevelop and build the Editor script AbstractExampleEditor.cs as .dll.
This works nearly exactly like to build the .dll of the standard script.

Choose EditorExtensionEditorDLL as name for this solution.

Follow the screenshots below, that show only the differences to the standard script .dll creation process,
and the descriptions how to do it.

] Edit References

All Packages Projects | .Net Assembly 2 Selected references:

\|| Program Files | Unity Editor | Data Managed |« =mmmé™ System

Mame Size |"~'1-'}dlﬁE-'.'J ~

ICSharpCode.... 3 10.04.2015
Mono.Cecil.dll 27 B 14.04.2015

timow_001 nunit.framewo... 143, 10.04.2015

Desktop Unity.CecilTool... 10, 14.04.2015

Local Disk (€ Unity.DataCon... 10,8 k8 14.04.2015

Local Disk (D:) Unity.IvyParser. .. B 14.04.2015

FocAhEElE Unity.Locator.dll 87k 14.04.2015
e, Unity.Serializa... 16,9 kB 14.04.2015
UnityEditor.dll . 14.04.2015 < mmmm=
UnityEditor.Gr... 2104 kB 14.04.2015
UnityEngine.dll 794.6 kB 14.04.2015 <l mmm==

Assemblies W

.ﬁ.dd ﬂ: 2 N

Also add a reference to the UnityEditor.dll.

Edit References

Net Assembly
EditorExtensionStandardDLL bin | Release |« mmmm=

Mame s Size UnityEditor.dll
EditorExtensionStandardDLL.dll 51kB <L mmmm= :
: - : UnityEngine.dll
& Recently Used UnityEngine.dll 794.6 kB -
omow_001
Desktop
£ Local Disk {C:)
Local Disk

- Removable Di...
& DVD BWDn
4 BD-ROM Drive...

- Vo | P

= Aszemblies

EditorExtensionStandardDLL, Version=1.0.5592.21673, Culture=ne... Add € mmmmm

Cancel

And add a reference to the .dll of the standard script that was build in chapter 11.1..

Add files

\ || 2014 | T-8 || GitHub Unity Editor Extension .dll ssets | Editor| < mmmm=

Places Mame Size Modified
, Search AbstractExampleEditor.cs < mmmm= . Yesterday at 20:48

& Recently Used
timow_001
Desktop

2. Local Dis .

- Local Disk (D:)
-~ Local Disk (E:)

— Removable Di...
& DVD RW Drive ...
4 BD-ROM Drive...

Documents
T-8
Backups

[] override default build action

Cancel Open

Add a link to the file AbstractExampleEditor.cs instead of AbstractExample.cs to create a .dll of the file
AbstractExampleEditor.cs.

EditorExtensionkditorDLL - MonoDevelop-Unity

ontrol Tools Window Help

& Build successful,

Solution

¥ [EditorExtensionEditorDLL
¥ [| EditorExtensionEditorDLL
v | References
— UnityEditor.dll
= UnityEngine.dll
— EditorExtensionStandardDLL.dll
System

_| AbstractExampleEditor.cs

Assemblyinfo.cs

aUINg dawniog]

=
=

Uol3n|o

The solution window should look like this now.

You don't need to enable the Generate XML documentation option in the Project Options window because
there was no documentation added to the file AbstractExampleEditor.cs.
There shouldn't be any warning when you build the .dll.

1 table of contents |

12. Test the .dlls / .xml in a new Unity project

1. In Unity create a new project (menu bar -> File -> New Project...) and name it e.g.
EditorExtensionDLLTest.

2. In the Project window create a folder called "Scripts" and another called "Editor".

Open the Windows File Explorer and navigate to the MonoDevelop project of the standard script

(..\EditorExtensionStandardDLL\bin\Release) and drag & drop the

files EditorExtensionStandardDLL.dll and EditorExtensionStandardDLL.xml in Unity's Project window
into the Scripts folder.

4. Use the Windows File Explorer to navigate to the MonoDevelop project of the Editor script
(..\EditorExtensionEditorDLL\bin\Release) and drag & drop the file EditorExtensionEditorDLL.dlIl in
Unity's Project window into the Editor folder.

5. Add a new empty gameobject to the Hierarchy window with menu bar -> GameObject -> Create
Empty.

6. In the Project window navigate to the Scripts folder and open the EditorExtensionStandardDLL.dll
by clicking the small triangle to the left of the .dll. A file called AbstractExample will becomes
visible.

Drag & drop the AbstractExample file to the empty GameObject in the Hierarchy window.
8. Add a cube to the Hierarchy window with menu bar -> 3D Object -> Cube.

Now you have the same scene setup like in the Unity example project with the source code files.

Note: Unity's new Plugin Inspector automatically detects the .dll correct. It's made for all platforms
because it only contains "Unity code".

| table of contents {

http://docs.unity3d.com/Manual/PluginInspector.html

13. Create a build application

Attach the Cube gameobject to the GameObject gameobject to add the three components.
Check the Cube gameobject that all three components are attached by the .dll.
In the menu bar click File -> Build & Run.

Set the Platform to "PC, Mac and Linux Standalone".
(Btw. -- Aren't Mac OS X and Linux computers "personal computers" (PCs for short) as well ?

P W NPE

Ul

Click the "Build & Run" button and select a location to save the build and name it.
Click "Play!". (Press ALT + F4 to quit the application.)

7. The cube doesn't move so the .dll deletes the components when the application is started.

Note: When you have a look at the log file (output_log.txt) of the build application (located in the
application folder) you'll notice that the number of attached BoxColliders seems to remain one!
This happens because in the build application

GameObject.Destroy(targetsCollider);

is used, so the deletion is delayed slightly until after the current Update loop.

1| table of contents |

14. Test the intellisense tooltips

To test the intellisense tooltips in MonoDevelop just use the Unity project from chapter 13. and create new
C# script (or use the one included in the abstractexample.unitypackage) in the Scripts folder and type

AbstractExample.g

inside the method Start and you can see the description of the method GetComponentCount.

Assembly-CSharp - ScriptshintellisenseTest.cs* - MonoaDevelop-Unity

View Search Project Build Run Version Control Tools Window Help
I_'];E:ug W

IntellisenseTest.cs AbstractExample Editer.cs AbstractExample.cs

IntellisenseTest » E Start ()
using UnityEmgine;
using System.Collections;

tlazs IntellisenseTest : MonoBehaviour {

Start (] {
AbstractExample.

Ualzacio

H public stetic int
GetCompanentCount=T= (
GameObject targetGameObject

)

Summary

Count the amount of cormponents of a certain type that are
attached to a gameobect. T is the type of the component to
count.

Update |

| table of contents |

15. Automatically generate a script documentation

Open the DoxyWizard application.
Let's use the example project you have downloaded here.
Then follow the screenshots and their descriptions below how to use DoxyGen.

S Doxygen GUI frontend +
File Settings Help
Step 1= Spedfy the working directory
Cz Usersftimow_001/Deskiop
en using the Wizard andfor Expert tab, the ch to the Run tab to generate the documentation

Fun

Project name:

Diagrams Praject

Project logo:

Speafy the dre

- - - :p Sour itub /Unity Editor Extension .dl

[+/] Scan rec
Specfy the directory where en should put the generated dacumers

-----::" Destination directory: | Cz/ w_001/Desktop

In the Wizard tab fill out the Project Topic and make sure you enable recursive scanning.

Doxygen GUI frontend +

Diagrams
code in the output
ct programming languag opiimize the
Opbmize C++ output
Optimize for C++/CLI output
) Optimize for Jav output
Optimiz or PHP output
Optimize for Fortran output

mize for VHDL output

In the Mode Topic select C# output.

Doxygen GUI frontend +
Settings Help
ify the worling directory
D1jD
zard andjor Expert tab, the ch to the Run tab to generate the documentation

Run

= m
[#] HTML

Ulutput ® plain HTML
Kimgpame) with navigation panel
prepare for compressed HTML {.chm)

of | With zearch functan

Change color,,.

-----::. O

L

[] Man pages

[] mich

In the Output Topic disable LaTeX. Don't change anything in the Diagrams Topic.

Doxygen GUI frontend +

zard and/or Expert tab rate the documentation
Wizard Expert

To

The default value i

Previous

Switch to the Expert tab and select the Build Topic. Enable the HIDE_UNDOC_MEMBERS and
HIDE_UNDOC _CLASSES flags that all classes and members without XML comment are not included into
the documentation.

Doxygen GUI frontend +

ch to the Run tab to generate the documentation

onfiguration

HTML output ﬁ: T T 1 1]

Change to the Run tab and click the Run doxygen button. When DoxyGen has finished click the Show
HTML output button.

c = il ti

Editor Extension .dll

AbstractExample Class Reference

ke e

Member Function Documentation

woid AbstRaciExample. aliderRigidbodydndHovenng ConstFomeiNeeded [Game! ct fargetGamedbject |

w colbder, the Agidhady and the corstart anee camponent tn this gameotgeet

The result.

Congratulations! You have finished this tutorial successfully. :)

(| table of contents |

© 2015 Singularity Defense / DynamicHead

http://www.singularitydefense.com/
http://www.singularitydefense.com/

	1. What it is about
	2. Why a dynamic-link library
	3. What you need
	4. Download the Unity project
	5. Custom Editor with tooltips
	6. Connect the Editor script with the standard script
	7. Notice changes in the Inspector window
	8. Add tooltips with description to intellisense
	9. Hide public members from intellisense in the standard script
	10. Use and Play the scene
	11. Create a dynamic-link library for the Unity Engine & Editor
	11.1. UnityEngine namespace
	11.2. UnityEditor namespace

	12. Test the .dlls / .xml in a new Unity project
	13. Create a build application
	14. Test the intellisense tooltips
	15. Automatically generate a script documentation

