
© 2015 Singularity Defense / DynamicHead

24. April 2015: Unity Editor Extension Dynamic-Link Library

Table of Contents

1. What it is about.........................................................................................................................2
2. Why a dynamic-link library..........................................................................................................2
3. What you need..........................................................................................................................2
4. Download the Unity project.........................................................................................................3
5. Custom Editor with tooltips..........................................................................................................4
6. Connect the Editor script with the standard script...........................................................................5
7. Notice changes in the Inspector window........................................................................................6
8. Add tooltips with description to intellisense....................................................................................7
9. Hide public members from intellisense in the standard script...........................................................8
10. Use and Play the scene.............................................................................................................9
11. Create a dynamic-link library for the Unity Engine & Editor..........................................................12

11.1. UnityEngine namespace....................................................................................................12
11.2. UnityEditor namespace.....................................................................................................25

12. Test the .dlls / .xml in a new Unity project.................................................................................29
13. Create a build application........................................................................................................30
14. Test the intellisense tooltips.....................................................................................................31
15. Automatically generate a script documentation...........................................................................32

http://www.singularitydefense.com/tutorials/unity-editor-extension-dynamic-link-library
http://www.singularitydefense.com/tutorials/unity-editor-extension-dynamic-link-library
http://www.singularitydefense.com/


1. What it is about

In this workflow tutorial you will learn how to

• create a custom Editor with tooltips

• add a tooltip with description to intellisense

• hide public members from intellisense

• document the code

• create a dynamic-link library for the Unity Engine & Editor

• automatically create a documentation

 table of contents ⇑ ⇑

2. Why a dynamic-link library

To create a managed Dynamic-Link Library ( .dll for short ) has the following advantages

• public members, that are needed for the custom Editor, can be hidden from intellisense

• it's handier than dozens of scripts

• not everyone can easily read, edit and possibly steal the source code

 table of contents ⇑ ⇑

3. What you need

To complete this tutorial you'll need the following free tools:

Unity with MonoDevelop to create the project, code, dynamic-link library and application

DoxyGen to automatically create the documentation from code

Note: This tutorial was created with Unity 5.0.1 on a Windows 8.1 PC.

 table of contents ⇑ ⇑

http://www.stack.nl/~dimitri/doxygen/
http://unity3d.com/get-unity
http://docs.unity3d.com/Manual/UsingDLL.html


4. Download the Unity project

To download the project will help you to better follow and understand this tutorial.

Download abstractexample.unitypackage

Download the file, create a new project in Unity ( menu bar -> File -> New Project... ), call it e.g. "Unity 
Editor Extension .dll".
Import the Unity package in your new project ( menu bar -> Assets -> Import Package -> Custom 
Package... -> *.unitypackage ), then click the Import button in the window where the files are listed that 
are imported.

Double click / open the scripts AbstractExample.cs ( in the Scripts folder of the project window ) 
and AbstractExampleEditor.cs ( in the Editor folder of the project window ).
Then open the scene AbstractExampleScene ( in the main folder ( Assets ) of the project window ).

In general you can also open MonoDevelop by using Unity's menu bar -> Assets -> Sync MonoDevelop 
Project.

Note: "Abstract" in this case has nothing to do with the C# keyword abstract. It only means that this is 
a theoretical example! I chose an abstract example to keep it as simple as possible.

 table of contents ⇑ ⇑

http://www.singularitydefense.com/uploads/2/4/7/1/24714231/abstractexample.unitypackage


5. Custom Editor with tooltips

A custom editor displays custom properties of your Unity standard script ( called AbstractExample.cs in 
this example ) in the Unity Inspector window.

To create a custom editor you need to extend your standard Unity script ( that normally derives from 
the MonoBehaviour class ) in MonoDevelop with a CustomEditor script ( that derives from the Editor class 
and is called AbstractExampleEditor.cs in this example ).

First you need to place this code inside the Editor script to tell the Editor script that it extends the 
standard script:

[CustomEditor( typeof( AbstractExample ))]

To show the public member variable

public Transform t_Abstract;

of the standard Unity script AbstractExample.cs in the Inspector window with a bold heading and tooltips 
you first need to connect this public member variable with the editor script.
This is done by the following lines of code in the Editor script AbstractExampleEditor.cs:

private SerializedProperty sp_t_abstract;

private void OnEnable( )
{
   sp_t_abstract = serializedObject.FindProperty( "t_Abstract" );
}

If you now change the reference to t_Abstract this will also automatically change the content of the 
variable sp_t_abstract.

Display the variable in Unity's inspector window by adding the following line of code to the editor 
script AbstractExampleEditor.cs:

EditorGUILayout.PropertyField( sp_t_abstract, new GUIContent( "AbstractTransform", "Som..." ));

The first string of GUIContent names the variable and the second string is the text shown by the tooltip 
when the name is hovered by the mouse cursor.
The bold heading works the same way.

In the Inspector window hover the heading and the variable name to see the tooltips.

 

 table of contents ⇑ ⇑

http://docs.unity3d.com/ScriptReference/Editor.html
http://docs.unity3d.com/ScriptReference/CustomEditor.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.html
http://docs.unity3d.com/Manual/Inspector.html
http://docs.unity3d.com/Manual/editor-CustomEditors.html


6. Connect the Editor script with the standard script

In much cases the standard script needs feedback from the Editor script. For example if you need to 
change something when ( like in this example ) the reference ( or value ) of a variable was changed.

Note: When you create a build application of a Unity project the UnityEditor namespace and also the 
Editor script is cut away and is not included into the build application. So you need to place all code you 
possibly want to execute at the runtime of the build application ( normally ) inside Unity standard scripts.

To create a connection you need the following code inside the Editor script AbstractExampleEditor.cs:

private AbstractExample s_target;

private void OnEnable( )
{
   s_target = ( AbstractExample )target;
}

This creates a variable that references to the standard script AbstractExample.cs and with the line

s_target.AbstractTransformChanged( );

it's possible to call the public method AbstractTransformChanged of the class AbstractExample from within
the class AbstractExampleEditor.

 table of contents ⇑ ⇑



7. Notice changes in the Inspector window

To know when a change was made from the user, to call a method in the script, you need to create a 
"change check" that starts before the observed variable sp_t_abstract in the code and ends behind it.

EditorGUI.BeginChangeCheck( );
EditorGUILayout.PropertyField( sp_t_abstract, new GUIContent( "AbstractTransform", "Som..." ));
if( EditorGUI.EndChangeCheck( ))
{
   serializedObject.ApplyModifiedProperties( );
   s_target.AbstractTransformChanged( );
}

If a change was made and EditorGUI.BeginChangeCheck( ) is true the change in sp_t_abstract is applied 
to t_Abstract with the first line of code within the if condition and then the 
method AbstractTransformChanged is called and several components are attached to the 
gameobject t_Abstract references to.

 table of contents ⇑ ⇑



8. Add tooltips with description to intellisense

Add tooltips to the intellisense of public ( or even private ) members with this code:

/// <summary>Count the amount of components of a certain type that are attached to a gameo...
/// <para>T is the type of the component to count.</para>
/// </summary>
/// <param name="targetGameObject">The gameobject its certain type of compon...</param>
/// <returns>The amount of certain components attached to the gameobject.</returns>
/// <example>To call this method from anywhere use e.g.:
/// <code>
/// int numberOfBoxColliders;
/// numberOfBoxColliders = AbstractExample.GetComponentCount&lt;BoxCollider&gt;( m... );
/// </code>
/// </example>
public static int GetComponentCount<T>( GameObject targetGameObject )
where T : Component
{
   Component[] componentTypeToCount;
   componentTypeToCount = ( Component[] )targetGameObject.GetComponents( typeof( T ));
   return componentTypeToCount.Length;
}

The /// comment slashes tell MonoDevelop ( and also e.g. Microsoft Visual Studio ) that these XML 
comments describe the member below in more detail.
<summary> should describe what the member is doing / good for.
<param name="parameterName"> describes a parameter of a method.
<returns> describes the content that is returned by the method.
<example>...<code> gives the user a multiline example how to use the member.

Note: Make sure you replace the pre-defined XML characters that the tooltips are displayed proper.

 table of contents ⇑ ⇑

http://www.w3schools.com/XML/xml_syntax.asp
http://www.w3schools.com/xml/default.asp
https://msdn.microsoft.com/de-de/library/5ast78ax.aspx


9. Hide public members from intellisense in the standard script

Some members in the standard script need to be public that the connected Editor script can access them.
But in the final product the user should only see the methods that she/he is allowed to use and that are 
documented.
To hide these members just add this code above the member you want to hide from intellisense like this:

[System.ComponentModel.Browsable( false ), 
System.ComponentModel.EditorBrowsable(System.ComponentModel.EditorBrowsableState.Never)]
public Transform t_Abstract;

Note: To hide this variable from intellisense only shows that you can hide all kind of members. It is still 
accessible from outside.

Note2: This will only work in the build .dll! ( So.. let's test it after the script was build to a .dll. )

 table of contents ⇑ ⇑



10. Use and Play the scene

Let's test the example scene AbstractExampleScene.
Follow the screenshots and their descriptions below how to do this.

Select the AbstractController gameobject in the Hierarchy window ( 1. ). Now you can see the custom 
Editor in action. To connect the Cube gameobject to the script click the small circle ( 2. ) in the Inspector 
window. A Select Transfrom window will show up. Here select the Cube gameobject ( 3. ).



 

The method AttachColliderRigidbodyAndHoveringConstForceIfNeeded in the standard script 
AbstractExample.cs was called when the transform reference in the Inspector window was changed. 
( Left: before -- Right: after )



 

Click the Play button to run the scene. The Start method of the script AbstractExample.cs is called and 
generates the output in the console. The cube doesn't move. 

If you would comment / change the lines 108 & 109 of code in the Start method like this

//DeleteColliderRigidbodyAndConstForceIfPresent( t_Abstract.gameObject );
Debug.Log ( "Components NOT deleted." );

the three attached components are not deleted and the Cube gameobject will move to the right on Play.

 table of contents ⇑ ⇑



11. Create a dynamic-link library for the Unity Engine & Editor

To wrap the code in a .dll with MonoDevelop it is necessary to create two .dlls. One .dll includes the 
standart script and the other .dll includes the Editor script that will be cut off when the project is build as 
application. This' the reason why two .dlls are needed.

11.1. UnityEngine namespace

Create an new project in MonoDevelop and build the Editor script AbstractExample.cs as .dll.
Follow the pictures and the descriptions how to do this.

 

Create a new Solution.



 

In the New Solution window select that you want to create a C# -> Library, name it 
EditorExtensionStandardDLL and choose a proper location to save it. Then click the OK button.



 

Change the build mode to Release in MonoDevelop because the source code is working in the Editor, so we
assume it's also working as a build .dll.



 

Now delete the automatically created file MyClass.cs in the solution window. ( If you don't see the solution
window tab you can let it appear with menu bar -> View -> Pads -> Solution. ) We won't need it.



 

In the solution window click the small gear button and choose Edit References... to add references to 
other necessary .dlls. 



 

In the Edit References window change to the .Net Assembly tab and navigate to the Managed folder inside
the Unity folder to select the UnityEngine.dll. Then add it to the Selected references: list on the right side.
Click OK.



 

The next step is to link the source code to this solution. Click the small gear and click Add -> Add files...



 

Browse to the Unity example project and select and open the file AbstractExample.cs in the Scripts folder.



 

Select Add a link that the file is automatically updated here when you make changes in the Unity project.



 

The Solution window should look like this.



 

To get tooltips it is necessary to change the compiler settings. Click the small gear and open the Options.



 

In the Project Options window on the left side select Build -> Compiler. Make sure the Configuration is set
to Release. Enable Generate XML documentation to generate the XML file with the documentation. 
MonoDevelop will use it to load the intellisense text. Then click the OK button.



 

Now let's build the .dll. In the menu bar click Build -> Build EditorExtensionStandardDLL. Ignore the two 
warnings because the two members without XML comment will not show up in the intellisense at all. 
( Compare chapter 9. )

The build EditorExtensionStandardDLL.dll is saved into the MonoDevelop project folder under bin -> 
Release together with the EditorExtensionStandardDLL.xml file. Leave it there.. for now.

 table of contents ⇑ ⇑



11.2. UnityEditor namespace

Create an new project in MonoDevelop and build the Editor script AbstractExampleEditor.cs as .dll.
This works nearly exactly like to build the .dll of the standard script.

Choose EditorExtensionEditorDLL as name for this solution.

Follow the screenshots below, that show only the differences to the standard script .dll creation process, 
and the descriptions how to do it.

 

Also add a reference to the UnityEditor.dll.



 

And add a reference to the .dll of the standard script that was build in chapter 11.1..



 

Add a link to the file AbstractExampleEditor.cs instead of AbstractExample.cs to create a .dll of the file 
AbstractExampleEditor.cs.



 

The solution window should look like this now.

You don't need to enable the Generate XML documentation option in the Project Options window because 
there was no documentation added to the file AbstractExampleEditor.cs.
There shouldn't be any warning when you build the .dll.

 table of contents ⇑ ⇑



12. Test the .dlls / .xml in a new Unity project

1. In Unity create a new project ( menu bar -> File -> New Project... ) and name it e.g. 
EditorExtensionDLLTest.

2. In the Project window create a folder called "Scripts" and another called "Editor".

3. Open the Windows File Explorer and navigate to the MonoDevelop project of the standard script
( ..\EditorExtensionStandardDLL\bin\Release ) and drag & drop the 
files EditorExtensionStandardDLL.dll and EditorExtensionStandardDLL.xml in Unity's Project window
into the Scripts folder.

4. Use the Windows File Explorer to navigate to the MonoDevelop project of the Editor script
( ..\EditorExtensionEditorDLL\bin\Release ) and drag & drop the file EditorExtensionEditorDLL.dll in
Unity's Project window into the Editor folder.

5. Add a new empty gameobject to the Hierarchy window with menu bar -> GameObject -> Create 
Empty.

6. In the Project window navigate to the Scripts folder and open the EditorExtensionStandardDLL.dll 
by clicking the small triangle to the left of the .dll. A file called AbstractExample will becomes 
visible.

7. Drag & drop the AbstractExample file to the empty GameObject in the Hierarchy window.

8. Add a cube to the Hierarchy window with menu bar -> 3D Object -> Cube.

Now you have the same scene setup like in the Unity example project with the source code files.

Note: Unity's new Plugin Inspector automatically detects the .dll correct. It's made for all platforms 
because it only contains "Unity code".

 table of contents ⇑ ⇑

http://docs.unity3d.com/Manual/PluginInspector.html


13. Create a build application

1. Attach the Cube gameobject to the GameObject gameobject to add the three components.

2. Check the Cube gameobject that all three components are attached by the .dll.

3. In the menu bar click File -> Build & Run.

4. Set the Platform to "PC, Mac and Linux Standalone".
( Btw. -- Aren't Mac OS X and Linux computers "personal computers" ( PCs for short ) as well ? 

5. Click the "Build & Run" button and select a location to save the build and name it.

6. Click "Play!". ( Press ALT + F4 to quit the application. )

7. The cube doesn't move so the .dll deletes the components when the application is started.

Note: When you have a look at the log file ( output_log.txt ) of the build application ( located in the 
application folder ) you'll notice that the number of attached BoxColliders seems to remain one!
This happens because in the build application

GameObject.Destroy( targetsCollider );

is used, so the deletion is delayed slightly until after the current Update loop.

 table of contents ⇑ ⇑



14. Test the intellisense tooltips

To test the intellisense tooltips in MonoDevelop just use the Unity project from chapter 13. and create new
C# script ( or use the one included in the abstractexample.unitypackage ) in the Scripts folder and type

AbstractExample.g

inside the method Start and you can see the description of the method GetComponentCount.

 

 table of contents ⇑ ⇑



15. Automatically generate a script documentation

Open the DoxyWizard application.
Let's use the example project you have downloaded here.
Then follow the screenshots and their descriptions below how to use DoxyGen.

 

In the Wizard tab fill out the Project Topic and make sure you enable recursive scanning.



 

In the Mode Topic select C# output.



 

In the Output Topic disable LaTeX. Don't change anything in the Diagrams Topic.



 

Switch to the Expert tab and select the Build Topic. Enable the HIDE_UNDOC_MEMBERS and 
HIDE_UNDOC_CLASSES flags that all classes and members without XML comment are not included into 
the documentation.



 

Change to the Run tab and click the Run doxygen button. When DoxyGen has finished click the Show 
HTML output button.



 

The result.

Congratulations! You have finished this tutorial successfully. :)

 table of contents ⇑ ⇑

© 2015 Singularity Defense / DynamicHead

http://www.singularitydefense.com/
http://www.singularitydefense.com/

	1. What it is about
	2. Why a dynamic-link library
	3. What you need
	4. Download the Unity project
	5. Custom Editor with tooltips
	6. Connect the Editor script with the standard script
	7. Notice changes in the Inspector window
	8. Add tooltips with description to intellisense
	9. Hide public members from intellisense in the standard script
	10. Use and Play the scene
	11. Create a dynamic-link library for the Unity Engine & Editor
	11.1. UnityEngine namespace
	11.2. UnityEditor namespace

	12. Test the .dlls / .xml in a new Unity project
	13. Create a build application
	14. Test the intellisense tooltips
	15. Automatically generate a script documentation

